ASSESSMENT SCHEDULE (Sample)

	Achievement Criteria	No.	Evidence	Code	Judgement	Sufficiency
	Manipulate real and complex numbers, and solve equations.	One (a)	8 + 6i	A1	No alternative.	ACHIEVEMENT:
		(b)	$\frac{3}{2}$ cis $\frac{\pi}{6}$	A1	Any equivalent polar form.	Three of Code A1
		(c)	$1 + \sqrt{3}$ i	A1	Any equivalent rectangular form.	and
			1+1.732 i			Two of Code A2
		(d)	$-12-5\sqrt{3}$	A1	No alternative.	
E		Two	x = 1			
ACHIEVEMEN		(a)	x = -2	A2	No alternative	
			<i>x</i> = 3		(must be 3 solutions and not factors).	
		(b)	$3x - 1 = 10^{1.4}$ x = 8.706	A2	No alternative (accept any correct rounding to at least two sf).	
		(c)	$x = \frac{4 \pm \sqrt{16 - 20}}{2}$ $x = 2 + i$ $x = 2 - i$	A2	Both solutions. No alternative.	

Mathematics with Calculus: Manipulate real and complex numbers and solve equations (90638)

	Achievement Criteria	No.	Evidence	Code	Judgement	Sufficiency
CHIEVEMENT WITH MERIT	Solve more complicated equations.	Three Four Five	$3\operatorname{cis} \frac{\pi}{6} , 3\operatorname{cis} \frac{2\pi}{3}$ $3\operatorname{cis} \frac{-5\pi}{6} , 3\operatorname{cis} \frac{-\pi}{3}$ $x = -2.58$ Square equation to get $2x - 1 = x^2 - 4x + 4$	A1 or A2 M	Must have four solutions (or equivalent) in polar form with some valid method (algebraic or graphical). Correct answer, any method (any rounding to at least two sf).	MERIT: Achievement plus Two of Code M or All three Code M
AC			$x^{2}-6x+5=0$ x = 1, x = 5 x = 1 is not valid Solution is $x = 5$	A2 M	but answer must have only one solution.	

	Achievement Criteria	No.	Evidence	Code	Judgement	Sufficiency
ACHIEVEMENT WITH EXCELLENCE	Solve problem(s) involving real or complex numbers	Six (a) (b)	$z + \frac{1}{z} = x + \frac{x}{x^2 + y^2}$ + $(y + \frac{y}{x^2 + y^2})^{i}$ Equating real and imaginary $y - \frac{y}{x^2 + y^2} = 0$ Solve to get $y(1 - \frac{1}{x^2 + y^2}) = 0$ $y = 0$ or $x^2 + y^2 = 1$ Show $ k = x + \frac{1}{x} \ge 2$ Graphical proof could be: (a) correct graph of $y = x + \frac{1}{x}$ showing that $y \ge 2$ or $y \le 2$ only OR (b) Correct graph of $y = x + \frac{1}{x} $ showing that $y \ge 2$ always Algebraic proof could be As $y = 0$ $k = x + \frac{1}{x}$ ie $x^2 - kx + 1 = 0$ There are real roots so " $b^2 - 4ac \ge 0$ " $k^2 - 4 \ge 0$ $ k \ge 2$	A1 A2 M E	Any valid proof. And show $ \mathbf{k} \ge 2$ A valid explanation (could be algebraic, graphical or other). Some minor error or omission may be accepted.	EXCELLENCE: Merit plus Both code E